Page top

Building Automation


Industrial Automation


Power Automation & Safety

Bangladesh Distributor

E5EC-800

Digital Temperature Controller (Simple Type) (48 × 96 mm)

E5EC-800

48 × 96 mm. Large White PV Display That's Easier to Read. Easy to Use, from Model Selection to Setup and Operation. A Complete Range of I/O Capacities, Functions, and Performance. Handles More Applications.

about this Product Family

Ratings

Power supply voltage A in model number: 100 to 240 VAC, 50/60 Hz
D in model number: 24 VAC, 50/60 Hz; 24 VDC
Operating voltage range 85% to 110% of rated supply voltage
Power consumption 6.6 VA max. at 100 to 240 VAC, and 4.1 VA max. at 24 VAC or 2.3 W max. at 24 VDC
Sensor input Temperature input
Thermocouple: K, J, T, E, L, U, N, R, S, B, C/W, or PL II
Platinum resistance thermometer: Pt100 or JPt100
Infrared temperature sensor (ES1B): 10 to 70°C, 60 to 120°C, 115 to 165°C, or 140 to
260°C
Analog input
Current input: 4 to 20 mA or 0 to 20 mA
Voltage input: 1 to 5 V, 0 to 5 V, or 0 to 10 V
Input impedance Current input: 150 Ω max., Voltage input: 1 MΩ min.
(Use a 1:1 connection when connecting the ES2-HB-N/THB-N.)
Control method ON/OFF control or 2-PID control (with auto-tuning)
Control
output
Relay output SPST-NO, 250 VAC, 5 A (resistive load), electrical life: 100,000 operations,
minimum applicable load: 5 V, 10 mA
Voltage output
(for driving SSR)
Output voltage: 12 VDC ± 20% (PNP), max. load current: 40 mA, with short-circuit
protection circuit (The maximum load current is 21 mA for models with two control
outputs.)
Linear current
output
4 to 20 mA DC/0 to 20 mA DC, load: 500 Ω max., resolution: approx. 10,000
Auxiliary
output
Number of outputs 1, 2, or 3 (depends on model)
Output
specifications
SPST-NO relay outputs, 250 VAC, Models with 2 outputs: 3 A (resistive load),
Electrical life: 100,000 operations, Minimum applicable load: 10 mA at 5 V
Event
input
Number of inputs 2 or 4 (depends on model)
External contact
input
specifications
Contact input: ON: 1 kΩ max., OFF: 100 kΩ min.
Non-contact input: ON: Residual voltage: 1.5 V max., OFF: Leakage current: 0.1 mA max.
Current flow: Approx. 7 mA per contact
Potentiometer input 100 Ω to 10 kΩ
Setting method Digital setting using front panel keys
Indication method 11-segment digital display and individual indicators
Character height: PV: 18.0 mm, SV: 11.0 mm
Multi SP Up to eight set points (SP0 to SP7) can be saved and selected using event inputs, key
operations, or serial communications.
Bank switching None
Other functions Manual output, heating/cooling control, loop burnout alarm, SP ramp, other alarm
functions, heater burnout (HB) alarm (including SSR failure (HS) alarm), 40% AT,
100% AT, MV limiter, input digital filter, self tuning, PV input shift, run/stop, protection
functions, temperature status display, moving average of input value, FB moving
average
Ambient operating
temperature
-10 to 55°C (with no condensation or icing),
for 3-year warranty: -10 to 50°C (with no condensation or icing)
Ambient operating humidity 25% to 85%
Storage temperature -25 to 65°C (with no condensation or icing)
Altitude 2,000 m max.
Recommended fuse T2A, 250 VAC, time lag, low shut-off capacity
Installation environment Installation Category II, Pollution Class 2 (IEC 61010-1 compliant)

Input Ranges (Universal inputs)

Thermocouple/Platinum Resistance Thermometer

E5EC-800 Specifications 3

Analog input

Input type Current Voltage
Input specification 4 to 20 mA 0 to 20 mA 1 to 5 V 0 to 5 V 0 to 10 V
Setting range Usable in the following ranges by scaling:
-1999 to 9999, -199.9 to 999.9,
-19.99 to 99.99 or -1.999 to 9.999
Set value 25 26 27 28 29

Alarm type

Each alarm can be independently set to one of the following 19 alarm types. The default is 2: Upper limit. (see note.)
Auxiliary outputs are allocated for alarms. ON delays and OFF delays (0 to 999 s) can also be specified.

Set
value
Alarm type Alarm output operation Description of function
When alarm
value X is
positive
When alarm
value X is
negative
0 Alarm function
OFF
Output OFF No alarm
1 Upper- and
lower-limit *1
e5_c_sp_4_1
*2 Set the upward deviation in the set point for the
alarm upper limit (H) and the lower deviation in the
set point for the alarm lower limit (L). The alarm is
ON when the PV is outside this deviation range.
2
(default)
Upper-limit
e5_c_sp_4_2
e5_c_sp_4_13
Set the upward deviation in the set point by setting
the alarm value (X). The alarm is ON when the PV
is higher than the SP by the deviation or more.
3 Lower-limit
e5_c_sp_4_3
e5_c_sp_4_14
Set the downward deviation in the set point by
setting the alarm value (X). The alarm is ON when
the PV is lower than the SP by the deviation or more.
4 Upper- and
lower-limit
range *1
e5_c_sp_4_4
*3 Set the upward deviation in the set point for the
alarm upper limit (H) and the lower deviation in the
set point for the alarm lower limit (L). The alarm is
ON when the PV is inside this deviation range.
5 Upper- and
lower-limit with
standby
sequence *1
e5_c_sp_4_1
*5
*4 A standby sequence is added to the upper- and
lower-limit alarm (1). *6
6 Upper-limit
with standby
sequence
e5_c_sp_4_2
e5_c_sp_4_13
A standby sequence is added to the upper-limit
alarm (2). *6
7 Lower-limit
with tandby
sequence
e5_c_sp_4_3
e5_c_sp_4_14
A standby sequence is added to the lower-limit
alarm (3). *6
8 Absolute-value
upper-limit
e5_c_sp_4_5
e5_c_sp_4_15
The alarm will turn ON if the process value is larger
than the alarm value (X) regardless of the set point.
9 Absolute-value
lower-limit
e5_c_sp_4_6
e5_c_sp_4_16
The alarm will turn ON if the process value is smaller
than the alarm value (X) regardless of the set point.
10 Absolute-value
upper-limit
with standby
sequence
e5_c_sp_4_5
e5_c_sp_4_15
A standby sequence is added to the absolute-value
upper-limit alarm (8). *6
11 Absolute-value
lower-limit with
standby
sequence
e5_c_sp_4_6
e5_c_sp_4_16
A standby sequence is added to the absolute-value
lower-limit alarm (9). *6
12 LBA (alarm 1
type only)
- *7
13 PV change
rate alarm
- *8
14 SP absolute
value upper
limit alarm
e5_c_sp_4_7
e5_c_sp_4_17
This alarm type turns ON the alarm when the set
point (SP) is higher than the alarm value (X).
15 SP absolute
value lower
limit alarm
e5_c_sp_4_8
e5_c_sp_4_18
This alarm type turns ON the alarm when the set
point (SP) is lower than the alarm value (X).
16 MV absolute
value upper
limit alarm *9
Standard Control
e5_c_sp_4_9
Standard Control
e5_c_sp_4_19
This alarm type turns ON the alarm when the
manipulated variable (MV) is higher than the alarm
value (X).
Heating/Cooling
Control (Heating
MV)
e5_c_sp_4_9
Heating/Cooling
Control (Heating
MV)
Always ON
17 MV absolute
value lower
limit alarm *9
Standard Control
e5_c_sp_4_10
Standard Control
e5_c_sp_4_20
This alarm type turns ON the alarm when the
manipulated variable (MV) is lower than the alarm
value (X).
Heating/Cooling
Control (Cooling
MV)
e5_c_sp_4_9
Heating/Cooling
Control (Cooling
MV)
Always ON

*1 With set values 1, 4 and 5, the upper and lower limit values can be set independently for each alarm type, and are
      expressed as "L" and "H."
*2. Set value: 1, Upper- and lower-limit alarm
      e5_c_sp_4_31
*3. Set value: 4, Upper- and lower-limit range
      e5_c_sp_4_32
*4. Set value: 5, Upper- and lower-limit with standby sequence
       For Upper- and Lower-Limit Alarm Described Above *2
       • Case 1 and 2
           Always OFF when the upper-limit and lower-limit hysteresis overlaps.
       • Case 3: Always OFF
*5. Set value: 5, Upper- and lower-limit with standby sequence
       Always OFF when the upper-limit and lower-limit hysteresis overlaps.
*6. Refer to the E5[]C Digital Temperature Controllers User's Manual (Cat. No. H174) for information on the operation
       of the standby sequence.
*7. Refer to the E5[]C Digital Temperature Controllers User's Manual (Cat. No. H174) for information on the PV change
       rate alarm. This setting cannot be used with a position-proportional model.
*8. Refer to the E5[]C Digital Temperature Controllers User's Manual (Cat. No. H174) for information on the PV change
       rate alarm.
*9. When heating/cooling control is performed, the MV absolute upper limit alarm functions only for the heating operation
       and the MV absolute lower limit alarm functions only for the cooling operation.

Characteristics

Indication accuracy
(at the ambient
temperature of 23°C)
Thermocouple: (±0.3% of PV or ±1°C, whichever is greater) ±1 digit max. *1
Platinum resistance thermometer: (±0.2% of PV or ±0.8°C, whichever is greater) ±1 digit
Analog input: ±0.2% FS ±1 digit max.
CT input: ±5% FS ±1 digit max.
Potentiometer input: ±5% FS ±1 digit max.
Influence of
temperature *2
Thermocouple input (R, S, B, C/W, PL II): (±1% of PV or ±10°C, whichever is greater) ±1
digit max.
Other thermocouple input: (±1% of PV or ±4°C, whichever is greater) ±1 digit max. *3
Platinum resistance thermometer: (±1% of PV or ±2°C, whichever is greater) ±1 digit max.
Analog input: ±1%FS ±1 digit max.
CT input: ±5% FS ±1 digit max.
Influence of voltage *2
Influence of EMS.
(at EN 61326-1)
Input sampling period 50ms
Hysteresis Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F)
Analog input: 0.01% to 99.99% FS (in units of 0.01% FS)
Proportional band (P) Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F)
Analog input: 0.1 to 999.9% FS (in units of 0.1% FS)
Integral time (I) Standard, heating/cooling, or Position-proportional (Close)
0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s)
Position-proportional (Floating)
1 to 9999 s (in units of 1 s), 0.1 to 999.9 s (in units of 0.1 s)
Derivative time (D) 0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *4
Proportional band (P)
for cooling
Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F)
Analog input: 0.1 to 999.9% FS (in units of 0.1% FS)
Integral time (I) for
cooling
0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *4
Derivative time (D) for
cooling
0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *4
Control period 0.1, 0.2, 0.5, 1 to 99 s (in units of 1 s)
Manual reset value 0.0 to 100.0% (in units of 0.1%)
Alarm setting range -1999 to 9999 (decimal point position depends on input type)
Affect of signal source
resistance
Thermocouple: 0.1°C/Ω max. (100 Ω max.)
Platinum resistance thermometer: 0.1°C/Ω max. (10 Ω max.)
Insulation resistance 20 MΩ min. (at 500 VDC)
Dielectric strength 2,300 VAC, 50/60 Hz for 1 min between terminals of different charge
Vibration Malfunction 10 to 55 Hz, 20 m/s2 for 10 min each in X, Y, and Z directions
Resistance 10 to 55 Hz, 20 m/s2 for 2 hrs each in X, Y, and Z directions
Shock Malfunction 100 m/s2, 3 times each in X, Y, and Z directions
Resistance 300 m/s2, 3 times each in X, Y, and Z directions
Weight Controller: Approx. 210 g, Mounting Brackets: Approx. 4 g × 2
Degree of protection Front panel: IP66, Rear case: IP20, Terminals: IP00
Memory protection Non-volatile memory (number of writes: 1,000,000 times)
Standards Approved
standards
cULus: UL 61010-1/CSA C22.2 No.61010-1, Korean wireless regulations (Radio law: KC Mark) (Some models only.) *5, Lloyd's standards *6, EAC
Conformed
standards
EN 61010-1 (IEC 61010-1), RCM
EMC EMI EN 61326-1 *7
Radiated Interference Electromagnetic Field Strength: EN 55011 Group 1, class A
Noise Terminal Voltage: EN 55011 Group 1, class A
EMS: EN 61326-1 *7
ESD Immunity: EN 61000-4-2
Electromagnetic Field Immunity: EN 61000-4-3
Burst Noise Immunity: EN 61000-4-4
Conducted Disturbance Immunity: EN 61000-4-6
Surge Immunity: EN 61000-4-5
Voltage Dip/Interrupting Immunity: EN 61000-4-11

*1. The indication accuracy of K thermocouples in the -200 to 1300°C range, T and N thermocouples at a temperature of
       -100°C max., and U and L thermocouples at any temperatures is ±2°C ±1 digit max. The indication accuracy of the
       B thermocouple at a temperature of 400°C max. is not specified. The indication accuracy of B thermocouples at a
       temperature of 400 to 800°C is ±3°C max. The indication accuracy of the R and S thermocouples at a temperature
       of 200°C max. is ±3°C ±1 digit max. The indication accuracy of C/W thermocouples is (±0.3 of PV or ±3°C, whichever
       is greater) ±1 digit max. The indication accuracy of PL II thermocouples is (±0.3% of PV or ±2°C, whichever is
       greater) ±1 digit max.
*2. Ambient temperature: -10°C to 23°C to 55°C, Voltage range: -15% to 10% of rated voltage
*3. K thermocouple at -100°C max.: ±10°C max.
*4. The unit is determined by the setting of the Integral/Derivative Time Unit parameter.
*5. Refer to your OMRON website for the most recent information on applicable models.
*6. Refer to information on maritime standards in Shipping Standards on Catalog for compliance with Lloyd's Standards.
*7. Industrial electromagnetic environment (EN/IEC 61326-1 Table 2)

Communications Specifications

Transmission line connection method RS-485: Multidrop
Communications RS-485 (two-wire, half duplex)
Synchronization method Start-stop synchronization
Protocol CompoWay/F, or Modbus
Baud rate 9600, 19200, 38400, or 57600 bps
Transmission code ASCII
Data bit length* 7 or 8 bits
Stop bit length* 1 or 2 bits
Error detection Vertical parity (none, even, odd)
Block check character (BCC) with CompoWay/F or CRC-16 Modbus
Flow control None
Interface RS-485
Retry function None
Communications buffer 217 bytes
Communications response wait time 0 to 99 ms
Default: 20 ms

* The baud rate, data bit length, stop bit length, and vertical parity can be individually set using the Communications
    Setting Level.

Communications Functions

Programless
communications *1
You can use the memory in the PLC to read and write E5[]C parameters, start and stop
operation, etc. The E5[]C automatically performs communications with PLCs. No
communications programming is required.
Number of connected Temperature Controllers: 32 max. (Up to 16 for the FX Series)
Applicable PLCs
OMRON PLCs
CS Series, CJ Series, CP Series, NJ Series, or NX1P
Mitsubishi Electric PLCs
MELSEC Q Series, L Series, FX3 Series, or iQ-R Series
KEYENCE PLCs
KEYENCE KV Series
Component
Communications *1
When Digital Temperature Controllers are connected, set points and RUN/STOP commands can
be sent from the Digital Temperature Controller that is set as the master to the Digital
Temperature Controllers that are set as slaves.
Slope and offsets can be set for the set point.
Number of connected Digital Temperature Controllers: 32 max. (including master)
Copying *2 When Digital Temperature Controllers are connected, the parameters can be copied from the
Digital Temperature Controller that is set as the master to the Digital Temperature Controllers
that are set as slaves.

MELSEC is a registered trademark of Mitsubishi Electric Corporation.
KEYENCE is a registered trademark of Keyence Corporation.
*1 A Temperature Controller with version 1.1 or higher is required.
      A Temperature Controller with version 2.1 or higher is required for the FX Series or the KV Series.
*2 Both the programless communications and the component communications support the copying.

Current Transformer (Order Separately) Ratings

E54-CT1
E54-CT3
E54-CT1L
E54-CT3L
Dielectric strength 1,000 VAC for 1 min 1,500 VAC for 1 min
Vibration resistance 50 Hz, 98 m/s2
Weight E54-CT1: Approx. 11.5 g,
E54-CT3: Approx. 50 g
E54-CT1: Approx. 14 g,
E54-CT3: Approx. 57 g
Accessories E54-CT3 Only
Armatures (2)
Plugs (2)
None

Heater Burnout Alarms and SSR Failure Alarms

CT input (for heater current detection) Models with detection for single-phase heaters: One input
Models with detection for single-phase or three-phase heaters: Two
inputs
Maximum heater current 50 A AC
Input current indication accuracy ± 5% FS ± 1 digit max.
Heater burnout alarm setting range *1 0.1 to 49.9 A (in units of 0.1 A)
Minimum detection ON time: 100 ms *3
SSR failure alarm setting range *2 0.1 to 49.9 A (in units of 0.1 A)
Minimum detection OFF time: 100 ms *4

*1. For heater burnout alarms, the heater current will be measured when the control output is ON, and the output will
       turn ON if the heater current is lower than the set value (i.e., heater burnout detection current value).
*2. For SSR failure alarms, the heater current will be measured when the control output is OFF, and the output will turn
       ON if the heater current is higher than the set value (i.e., SSR failure detection current value).
*3. The value is 30 ms for a control period of 0.1 s or 0.2 s.
*4. The value is 35 ms for a control period of 0.1 s or 0.2 s.