## A Wide Range of Basic Mixed I/O Units for Different Applications and Wiring Methods

- One Mixed I/O Unit has connectors for both inputs and outputs. Use Mixed I/O Units to easily build space-saving systems.


CJ1W-MD231


CJ1W-MD261


CJ1W-MD563

## Features

- Select the best interface for each application: Fujitsu connectors and MIL connectors.
- Select sinking outputs or sourcing outputs. The CJ1W-MD232 has load short-circuit protection.
- The ON and OFF response times can be set to between 0 and 32 ms in the Setup in the CPU Unit.
- Mixed I/O Units with 5-V TTL inputs are also available. *
- A wide variety of Connector-Terminal Block Conversion Units are available to allow you to easily wire external I/O devices.
* Applies to the CJ1W-MD563.


## Ordering Information

## International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.


## Mixed I/O Units

| Unit type | Product name | Specifications |  |  |  |  |  | Current consumption (A) |  | Model | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Output type | I/O points | Input voltage, <br> Input current <br> Maximum switching <br> capacity | Commons | External connection | No. of words allocated | 5 V | 24 V |  |  |
| CJ1 <br> Basic I/O Units | DC Input/ Transistor Output Units | Sinking | 16 inputs | $24 \mathrm{VDC}$, | 16 points, 1 common | Fujitsu connector | 2 words | 0.13 | - | CJ1W-MD231 | $\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$ |
|  |  |  | 16 outputs | $\begin{aligned} & \text { 250 VAC/24 VDC, } \\ & 0.5 \mathrm{~A} \end{aligned}$ | 16 points, 1 common |  |  |  |  |  |  |
|  |  | Sinking | 16 inputs | $24 \mathrm{VDC}, 7 \mathrm{~mA}$ | 16 points, 1 common | MIL connector | 2 words | 0.13 | - | CJ1W-MD233 | $\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$ |
|  |  |  | 16 outputs | 12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$ | 16 points, 1 common |  |  |  |  |  |  |
|  |  | Sinking | 32 inputs | $24 \mathrm{VDC}, 4.1 \mathrm{~mA}$ | 16 points, 1 common | Fujitsu connector | 4 words | 0.14 | - | CJ1W-MD261 |  |
|  |  |  | 32 outputs | 12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$ | 16 points, 1 common |  |  |  |  |  |  |
|  |  | Sinking | 32 inputs | $24 \mathrm{VDC}, 4.1 \mathrm{~mA}$ | 16 points, 1 common | MIL connector | 4 words | 0.14 | - | CJ1W-MD263 |  |
|  |  |  | 32 outputs | 12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$ | 16 points, 1 common |  |  |  |  |  |  |
|  |  | Sourcing | 16 inputs | $24 \mathrm{VDC}, 7 \mathrm{~mA}$ | 16 points, 1 common | MIL connector | 2 words | 0.13 | - | CJ1W-MD232 | $\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$ |
|  |  |  | 16 outputs | $\begin{array}{\|l\|} \hline 24 \text { VDC, } 0.5 \mathrm{~A} \\ \text { Short-circuit protection } \\ \hline \end{array}$ | 16 points, 1 common |  |  |  |  |  |  |
|  | TTL I/O Units | - | 32 inputs | $5 \mathrm{VDC}, 35 \mathrm{~mA}$ | 16 points, 1 common | MIL connector | 4 words | 0.19 | - | CJ1W-MD563 | $\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$ |
|  |  |  | 32 outputs | $5 \mathrm{VDC}, 35 \mathrm{~mA}$ | 16 points, 1 common |  |  |  |  |  |  |

## Accessories

Connectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable ConnectorTerminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

## Applicable Connectors

Fujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

| Name | Connection | Remarks |  | Applicable Units | Model | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40-pin <br> Connectors | Soldered | FCN-361J040-AU FCN-360C040-J2 | Connector Connector Cover | Fujitsu Connectors: <br> CJ1W-ID231(32 inputs): 1 per Unit <br> CJ1W-ID261 (64 inputs): 2 per Unit <br> CJ1W-OD231 (32 outputs): 1 per Unit <br> CJ1W-OD261 (64 outputs): 2 per Unit <br> CJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit | C500-CE404 | - |
|  | Crimped | FCN-363J040 FCN-363J-AU FCN-360C040-J2 | Housing Contactor Connector Cover |  | C500-CE405 |  |
|  | Pressure welded | FCN-367J040-AU/F |  |  | C500-CE403 |  |
| 24-pin Connectors | Soldered | $\begin{aligned} & \text { FCN-361J024-AU } \\ & \text { FCN-360C024-J2 } \end{aligned}$ | Connector Connector Cover | Fujitsu Connectors: <br> CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit | C500-CE241 |  |
|  | Crimped | FCN-363J024 FCN-363J-AU FCN-360C024-J2 | Socket <br> Contactor <br> Connector Cover |  | C500-CE242 |  |
|  | Pressure welded | FCN-367J024-AU/F |  |  | C500-CE243 |  |

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

| Name | Connection | Remarks | Applicable Units | Model | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40-pin <br> Connectors | Pressure welded | FRC5-AO40-3TOS | MIL Connectors: <br> CJ1W-ID232 (32 inputs): 1 per Unit CJ1W-OD232/233 (32 outputs): 1 per Unit CJ1W-ID262 (64 inputs): 2 per Unit CJ1W-OD262/263 (64 outputs): 2 per Unit CJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit | XG4M-4030-T | - |
|  | Crimped | - |  | XG5N-401* |  |
| $\begin{aligned} & \text { 20-pin } \\ & \text { Connectors } \end{aligned}$ | Pressure welded | FRC5-AO20-3TOS | MIL Connectors: CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit | XG4M-2030-T | - |
|  | Crimped | - |  | XG5N-201* |  |

[^0]
## CJ1W-MD

## Applicable Connector-Terminal Block Conversion Units

| Type | Series | Number of poles | Wiring method | $\begin{gathered} \text { Terminal } \\ \text { type } \end{gathered}$ | Size |  |  | Mounting |  | Common terminals | Bleeder resistance | Indicators | I/O Units | Model * | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Depth (mm) | Height (mm) | Width (mm) | $\begin{array}{c\|} \text { DIN } \\ \text { Track } \end{array}$ | Screws |  |  |  |  |  |  |
| Generalpurpose devices, PLC | XW2R | 20 | Phillips screw | M3 | 50 | 48.05 | 81.7 | Yes | - | No | No | No | CJ1W-MD231 CJ1W-MD232 CJ1W-MD233 | XW2R-J20GD-T | - |
|  |  | 34 |  |  | 50 | 48.05 | 130.7 |  |  |  |  |  | CJ1W-MD261 | XW2R-J34GD-C1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-J34GD-C3 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJ1W-MD263 | XW2R-J34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJTW-MD263 | XW2R-J34GD-C4 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJ1W MD563 | XW2R-J34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJIW-MD | XW2R-J34GD-C4 |  |
|  |  | 20 | Slotted screw (rise up) | M3 <br> (European type) | 50 | 48.05 | 81.7 |  |  |  |  |  | CJ1W-MD231 CJ1W-MD232 CJ1W-MD233 | XW2R-E20GD-T |  |
|  |  |  |  |  | 50 | 44.81 | 98.5 |  |  |  |  |  |  | XW2R-E34GD-C1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJTW-MD261 | XW2R-E34GD-C3 |  |
|  |  | 34 |  |  |  |  |  |  |  |  |  |  | CJ1W-MD263 | XW2R-E34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-E34GD-C4 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-E34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJTW-MD563 | XW2R-E34GD-C4 |  |
|  |  | 20 | Push-in spring | Clamp | 50 | 48.05 | 81.7 |  |  |  |  |  | CJ1W-MD231 CJ1W-MD232 CJ1W-MD233 | XW2R-P20GD-T |  |
|  |  | 34 |  |  | 50 | 44.81 | 98.5 |  |  |  |  |  | CJ1W-MD261 | XW2R-P34GD-C1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-P34GD-C3 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJ1W-MD263 | XW2R-P34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-P34GD-C4 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | CJ1W-MD563 | XW2R-P34GD-C2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | XW2R-P34GD-C4 |  |

Note: For the combination of Input Units with Connector-Terminal Block Conversion Units, refer to 2. Connecting Connector-Terminal Block
Conversion Units.

* Representative models only. For details, refer to the XW2R series catalog (Cat. No. G077).


## Connecting Cables for Connector-Terminal Block Conversion Units

| Appearance | Connectors | Cable lenght [m] | Model |
| :---: | :---: | :---: | :---: |
| XW2Z- $\square \square \square$ A | One 24-pin Fujitsu Connector to One 20-pin MIL Connector | 0.5 | XW2Z-050A |
|  |  | 1 | XW2Z-100A |
|  |  | 1.5 | XW2Z-150A |
|  |  | 2 | XW2Z-200A |
|  |  | 3 | XW2Z-300A |
|  |  | 5 | XW2Z-500A |
|  |  | 7 | XW2Z-700A |
|  |  | 10 | XW2Z-010A |
|  |  | 15 | XW2Z-015MA |
|  |  | 20 | XW2Z-020MA |
| XW2Z-■ $\square \square X$ | One 20-pin MIL Connector to One 20-pin MIL Connector | 0.5 | xW2Z-C50X |
|  |  | 1 | XW2Z-100X |
|  |  | 2 | XW2Z-200X |
|  |  | 3 | XW2Z-300X |
|  |  | 5 | XW2Z-500X |
|  |  | 10 | XW2Z-010X |
| XW2Z-■ดロPF | One 40-pin Fujitsu Connector to One 40-pin MIL Connector | 0.5 | XW2Z-050PF |
|  |  | 1 | XW2Z-100PF |
|  |  | 1.5 | XW2Z-150PF |
|  |  | 2 | XW2Z-200PF |
|  |  | 3 | XW2Z-300PF |
|  |  | 5 | XW2Z-500PF |
| XW2Z-■ดロPM | One 40-pin MIL Connector to One 40-pin MIL Connector | 0.5 | XW2Z-050PM |
|  |  | 1 | XW2Z-100PM |
|  |  | 1.5 | XW2Z-150PM |
|  |  | 2 | XW2Z-200PM |
|  |  | 3 | XW2Z-300PM |
|  |  | 5 | XW2Z-500PM |

## Applicable I/O Relay Terminals

| Type | Series | Specifications |  |  |  |  |  | Size (horizontal mounting) |  |  | Mounting |  | Model | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Classification |  | Polarity | Number of points | Rated ON currentat contacts | Rated voltage | Horizontal (mm) | Vertical (mm) | Height (mm) | $\begin{aligned} & \text { DIN } \\ & \text { Track } \end{aligned}$ | Screws |  |  |
| Push-In Plus terminal block | G70V | Inputs | DC inputs | NPN | $\begin{aligned} & 16 \\ & (\text { SPSTNO } \times 16) \end{aligned}$ | 50 mA | 24 VDC | 143 | 90 | 56 | Yes | Yes | G70V-SID16P *4 | UC, CE (TÜV certified) |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70V-SID16P-1 *4 |  |
|  |  |  |  | NPN |  |  |  |  |  |  |  |  | G70V-SID16P-C16 *5 |  |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70V-SID16P-1-C16*5 |  |
|  |  | Outputs | Relay outputs | NPN | $\begin{array}{\|l\|} \hline 16 \\ (\text { SPDT } \times 16) \end{array}$ | $6 \mathrm{~A} /$ point 10 A common |  |  |  |  |  |  | G70V-SOC16P *4 |  |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70V-SOC16P-1 *4 |  |
|  |  |  |  | NPN |  |  |  |  |  |  |  |  | G70V-SOC16P-C4 *6 |  |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70V-SOC16P-1-C4 *6 |  |
| Standard | G7TC | Inputs | AC inputs | NPN | $\begin{aligned} & 16 \\ & (\text { SPSTNO } \times 16 \text { ) } \end{aligned}$ | 1A | 100/110 VAC | 182 | 85 | 68 | Yes | No | G7TC-IA16 AC100/110 | U, C |
|  |  |  |  |  |  |  | 200/220 VAC |  |  |  |  |  | G7TC-IA16 AC200/220 |  |
|  |  |  | DC inputs |  |  |  | 12 VDC |  |  |  |  |  | G7TC-ID16 DC12 |  |
|  |  |  |  |  |  |  | 24 VDC |  |  |  |  |  | G7TC-ID16 DC24 |  |
|  |  |  |  |  |  |  | 100/110 VDC |  |  |  |  |  | G7TC-ID16 DC100/110 |  |
|  |  | Outputs | Relay outputs | NPN | $\begin{aligned} & 8 \\ & (\text { SPSTNO } \times 8) \end{aligned}$ | 5A | 12 VDC | 102 |  |  |  |  | G7TC-OC08 DC12 |  |
|  |  |  |  |  |  |  | 24 VDC |  |  |  |  |  | G7TC-OC08 DC24 |  |
|  |  |  |  |  | $\begin{array}{\|l} 16 \\ \text { (SPSTNO } \times 16 \text { ) } \end{array}$ |  | 12 VDC | 182 |  |  |  |  | G7TC-OC16 DC12 |  |
|  |  |  |  |  |  |  | 24 VDC |  |  |  |  |  | G7TC-OC16 DC24 |  |
|  |  |  |  |  |  |  | 12 VDC |  |  |  |  |  | G7TC-OC16-1 DC12 |  |
|  |  |  |  | PNP | (SPSTNO $\times 16$ ) |  | 24 VDC |  |  |  |  |  | G7TC-OC16-1 DC24 |  |
| Highcapacity socket | G70A *1 <br> (Socket only) | Inputs | Relay inputs | NPN/ PNP | 16 (SPDT $\times 16$ possiblewith G2R Relays) | 100 mA | $\begin{aligned} & \hline 110 \text { VDC } \\ & \text { max., } 240 \\ & \text { VAC max. } \\ & \text { *2 } \end{aligned}$ | 234 | 75 | 64 | Yes | No | G70A-ZOC16-5 | $\begin{aligned} & \text { U, C, CE } \\ & \text { (VDE } \\ & \text { certified) } \end{aligned}$ |
|  |  | Outputs | Relay outputs | NPN |  | 10 A (Terminal block allowable | 24 VDC |  |  |  |  |  | G70A-ZOC16-3 |  |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70A-ZOC16-4 |  |
| Spacesaving | Vertical type G70D-V | Outputs | Relay outputs | NPN | $\begin{aligned} & 16 \\ & \text { (SPSTNO } \times 16 \text { ) } \end{aligned}$ | 5 A or 3 A *3 | 24 VDC | 135 | 46 | 81 | Yes | Yes | G70D-VSOC16 | $\begin{aligned} & \text { U, C, CE } \\ & \text { (VDE } \\ & \text { certified) } \end{aligned}$ |
|  |  |  | $\begin{aligned} & \text { MOSFET } \\ & \text { relay } \\ & \text { outputs } \end{aligned}$ |  |  | 0.3 A |  |  |  |  |  |  | G70D-VFOM16 |  |
|  | $\begin{aligned} & \text { Flat type } \\ & \text { G70D } \end{aligned}$ |  | Relay outputs | NPN | $\begin{array}{\|l} 8 \\ (\text { SPSTNO } \times 8) \end{array}$ | 5 A |  | 68 | 93 | 44 | Yes | Yes | G70D-SOC08 | - |
|  |  |  |  |  | $\begin{array}{\|l\|} \hline 16 \\ \text { (SPSTNO } \times 16 \text { ) } \end{array}$ | 3 A |  | 156 | 51 | 39 |  |  | G70D-SOC16 |  |
|  |  |  |  | PNP | $\begin{array}{\|l\|} \hline 16 \\ \text { (SPSTNO } \times 16 \text { ) } \end{array}$ | 3 A |  |  |  |  |  |  | G70D-SOC16-1 |  |
|  |  |  | MOSFET relay outputs | NPN | $\begin{array}{\|l\|} \hline 16 \\ \text { (SPSTNO } \times 16 \text { ) } \end{array}$ | 0.3 A |  |  |  |  |  |  | G70D-FOM16 |  |
|  |  |  |  | PNP |  |  |  |  |  |  |  |  | G70D-FOM16-1 |  |
| Highcapacity, spacesaving |  | Outputs | Relay outputs | NPN | $\begin{aligned} & 8 \\ & (\text { SPSTNO } \times 8) \end{aligned}$ | 10 A | 24 VDC | 136 | 93 | 55 | Yes | Yes | G70R-SOC08 | - |

${ }^{*}$. G70A is a I/O terminal socket product. Relay is not provided with the socket. Be sure to order a relay, timer separately.
*2. Each relay to be mounted must incorporate a coil that has proper specifications within the maximum rated voltage range.
*3. Eight or fewer points ON: 5 A, Nine or more points ON: 3 A.
*4. Internal common at terminal block: No internal connections
*5. Internal common at terminal block: Internal IO common 16 points internally connected
*6. Internal common at terminal block: Every 4 points internally connected at terminal block middle row.
Note: 1. For the combination of Input Units with I/O Relay Terminal and Connecting Cables, refer to 3. Connecting I/O Relay Terminals.
2. Please refer to each Datasheet about details.

Cables for I/O Relay Terminals

| Type | Name | I/O Classification | Appearance | Cable length L (mm) |  | Models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fujitsu connectors (24 pins) | Cables with Connectors (1:1) <br> XW2Z-R $\square C$ | 16 I/O points |  | 1,000 |  | XW2Z-R100C |
|  |  |  |  | 1,500 |  | XW2Z-R150C |
|  |  |  |  | 2,000 |  | XW2Z-R200C |
|  |  |  |  | 3,000 |  | XW2Z-R300C |
|  |  |  |  | 5,000 |  | XW2Z-R500C |
| Fujitsu connectors (40 pins) | Cables with Connectors (1:2) <br> XW2Z-RIDC- $\square$ <br> XW2Z-RO■C- | 32 input points | Straight length (without bends) | (A) 1,000 | (B) 750 | XW2Z-RI100C-75 |
|  |  |  |  | (A) 1,500 | (B) 1,250 | XW2Z-RI150C-125 |
|  |  |  |  | (A) 2,000 | (B) 1,750 | XW2Z-RI200C-175 |
|  |  |  |  | (A) 3,000 | (B) 2,750 | XW2Z-RI300C-275 |
|  |  |  |  | (A) 5,000 | (B) 4,750 | XW2Z-RI500C-475 |
|  |  | 32 output points |  | (A) 1,000 | (B) 750 | XW2Z-RO100C-75 |
|  |  |  |  | (A) 1,500 | (B) 1,250 | XW2Z-RO150C-125 |
|  |  |  |  | (A) 2,000 | (B) 1,750 | XW2Z-RO200C-175 |
|  |  |  |  | (A) 3,000 | (B) 2,750 | XW2Z-RO300C-275 |
|  |  |  |  | (A) 5,000 | (B) 4,750 | XW2Z-RO500C-475 |
| MIL connectors (20 pins) | Cables with Connectors (1:1) | 16 I/O points |  | 250 |  | XW2Z-RI25C |
|  |  |  |  | 500 |  | XW2Z-RI50C |
|  | XW2Z-RIDC |  |  | 250 |  | XW2Z-RO25C |
|  | XW2Z-ROCC |  |  | 500 |  | xW2Z-RO50C |
| MIL connectors (40 pins) | Cables with Connectors (1:2) <br> XW2Z-ROD- $\square$-D1, <br> XW2Z-RIロ-■-D1 | $32 \mathrm{I} / \mathrm{O}$ points |  | (A) 500 | (B) 250 | XW2Z-RO50-25-D1 |
|  |  |  |  | (A) 750 | (B) 500 | XW2Z-R075-50-D1 |
|  |  |  |  | (A) 1,000 | (B) 750 | XW2Z-R0100-75-D1 |
|  |  |  |  | (A) 1,500 | (B) 1,250 | XW2Z-RO150-125-D1 |
|  |  |  |  | (A) 2,000 | (B) 1,750 | XW2Z-RO200-175-D1 |
|  |  |  |  | (A) 3,000 | (B) 2,750 | XW2Z-RO300-275-D1 |
|  |  |  |  | (A) 5,000 | (B) 4,750 | XW2Z-RO500-475-D1 |
|  |  |  |  | (A) 500 | (B) 250 | XW2Z-R150-25-D1 |
|  |  |  |  | (A) 750 | (B) 500 | XW2Z-R175-50-D1 |
|  |  |  |  | (A) 1,000 | (B) 750 | XW2Z-RI100-75-D1 |
|  |  |  |  | (A) 1,500 | (B) 1,250 | XW2Z-R1150-125-D1 |
|  |  |  |  | (A) 2,000 | (B) 1,750 | XW2Z-R1200-175-D1 |
|  |  |  |  | (A) 3,000 | (B) 2,750 | XW2Z-R1300-275-D1 |
|  |  |  |  | (A) 5,000 | (B) 4,750 | XW2Z-R1500-475-D1 |

Note: Refer to the Datasheet for the XW2Z-R Cables for I/O Relay Terminals (Cat. No. G126).

## Mountable Racks

| Model | NJ system |  | CJ system (CJ1, CJ2) |  | CP1H system CP1H PLC | NSJ system |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU Rack | Expansion Rack | CPU Rack | Expansion Backplane |  | NSJ Controller | Expansion Backplane |
| CJ1W-MD231 | 10 Units | 10 Units (Per Expansion Rack) | 10 Units | 10 Units (Per Expansion Backplane) | Not supported | Not supported | 10 Units (Per Expansion Backplane) |
| CJ1W-MD232 |  |  |  |  |  |  |  |
| CJ1W-MD233 |  |  |  |  |  |  |  |
| CJ1W-MD261 |  |  |  |  |  |  |  |
| CJ1W-MD263 |  |  |  |  |  |  |  |
| CJ1W-MD563 |  |  |  |  |  |  |  |

## Specifications

## CJ1W-MD231 DC Input/Transistor Output Unit (24 VDC, 16 Inputs/16 Outputs)

| Name | 16-point DC Input/16-point Transistor Output Unit with Fujitsu Connectors (Sinking Outputs) |  |  |
| :---: | :---: | :---: | :---: |
| Model | CJ1W-MD231 |  |  |
| Output section (CN1) |  | Input section (CN2) |  |
| Rated Voltage | 12 to 24 VDC | Rated Input Voltage | 24 VDC |
| Operating Load Voltage Range | 10.2 to 26.4 VDC | Operating Input Voltage | 20.4 to 26.4 VDC |
| Maximum Load Current | 0.5 A/point, 2.0 A/Unit | Input Impedance | $3.3 \mathrm{k} \Omega$ |
| Maximum Inrush Current | 4.0 A/point, 10 ms max . | Input Current | 7 mA typical (at 24 VDC ) |
| Leakage Current | 0.1 mA max. | ON Voltage/ON Current | 14.4 VDC min./3 mA min. |
| Residual Voltage | 1.5 V max. | OFF Voltage/OFF Current | 5 VDC max./1 mA max. |
| ON Response Time | 0.1 ms max. | ON Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |
| OFF Response Time | 0.8 ms max. |  |  |
| No. of Circuits | 16 (16 points/common, 1 circuit) | OFF Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |
| Fuse | None |  |  |
| External Power Supply | 10.2 to $26.4 \mathrm{VDC}, 20 \mathrm{~mA} \mathrm{~min}$. | No. of Circuits | 16 (16 points/common, 1 circuit) |
|  |  | Number of Simultaneously ON Points | 75\% (at 24 VDC ) |
| Insulation Resistance | $20 \mathrm{M} \Omega \mathrm{min}$. between the external terminals and the GR terminal (at 100 VDC ) |  |  |
| Dielectric Strength | 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max . |  |  |
| Internal Current Consumption | 5 VDC 130 mA max. |  |  |
| Weight | 90 g max. |  |  |
| Accessories | None |  |  |
| Circuit Configuration | CN1 (OUT) | CN2 (IN) |  |
|  | - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  <br> - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  |



* The ON response time will be $20 \mu$ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD233 DC Input/Transistor Output Unit (24 VDC, 16 Inputs/16 Outputs)

| Name | 16-point DC Input/16-point Transistor Output Unit with MIL Connectors (Sinking Outputs) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model | CJ1W-MD233 |  |  |  |
| Output section (CN1) |  |  | Input section (CN2) |  |
| Rated Voltage | 12 to 24 VDC |  | Rated Input Voltage | 24 VDC |
| Operating Load Voltage Range | 10.2 to 26.4 VDC |  | Operating Input Voltage | 20.4 to 26.4 VDC |
| Maximum Load Current | 0.5 A/point, 2.0 A/Unit |  | Input Impedance | $3.3 \mathrm{k} \Omega$ |
| Maximum Inrush Current | 4.0 A/point, 10 ms max . |  | Input Current | 7 mA typical (at 24 VDC ) |
| Leakage Current | 0.1 mA max. |  | ON Voltage/ON Current | 14.4 VDC min./3 mA min. |
| Residual Voltage | 1.5 V max. |  | OFF Voltage/OFF Current | 5 VDC max./1 mA max. |
| ON Response Time | 0.1 ms max. |  | ON Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |
| OFF Response Time | 0.8 ms max. |  |  |  |
| No. of Circuits | 16 (16 points/common, 1 circuit) |  | OFF Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |
| Fuse | None |  |  |  |
|  | 10.2 to $26.4 \mathrm{VDC}, 20 \mathrm{~mA}$ min. |  | No. of Circuits | 16 (16 points/common, 1 circuit) |
| External Power Supply |  |  | Number of Simultaneously ON Points | 75\% (at 24 VDC ) |
| Insulation Resistance | $20 \mathrm{M} \Omega \mathrm{min}$. between the external terminals and the GR terminal (at 100 VDC ) |  |  |  |
| Dielectric Strength | 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max. |  |  |  |
| Internal Current Consumption | 5 VDC 130 mA max. |  |  |  |
| Weight | 90 g max. |  |  |  |
| Accessories | None |  |  |  |
| Circuit <br> Configuration | CN1 (OUT) |  | CN2 (IN) |  |
|  |  |  |  |  |

- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.
- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

|  | CN1 (OUT) | CN2 (IN) |
| :---: | :---: | :---: |
| External connection and terminal-device variable diagram | - When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if polarity is reversed. <br> - Be sure to wire both terminals 3 and 4 (COM0 ( 0 V )) of CN1. <br> - Be sure to wire both terminals 1 and $2(+\mathrm{V})$ of CN1. <br> - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. | - When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if polarity is reversed. <br> - Be sure to wire both pins 3 and 4 (COM1) of CN2, and set the same polarity for both pins. <br> - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |

* The ON response time will be $20 \mu$ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD261 DC Input/Transistor Output Unit (24 VDC 32 Inputs/32 Outputs)

| Name | 32-point DC Input/32-point Transistor Output Unit with Fujitsu Connectors (Sinking Outputs) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model | CJ1W-MD261 |  |  |  |
| Output section (CN1) |  |  | Input section (CN2) |  |
| Rated Voltage | 12 to 24 VDC |  | Rated Input Voltage | 24 VDC |
| Operating Load Voltage Range | 10.2 to 26.4 VDC |  | Operating Input Voltage | 20.4 to 26.4 VDC |
| Maximum Load Current | 0.3 A/point, 1.6 A/common, 3.2 A/Unit |  | Input Impedance | $5.6 \mathrm{k} \Omega$ |
| Maximum Inrush Current | 3.0 A/point, 10 ms max . |  | Input Current | 4.1 mA typical (at 24 VDC ) |
| Leakage Current | 0.1 mA max. |  | ON Voltage/ON Current | 19.0 VDC min./3 mA min. *2 |
| Residual Voltage | 1.5 V max. |  | OFF Voltage/OFF Current | 5 VDC max./1 mA max. |
| ON Response Time | 0.5 ms max . |  | ON Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1 |
| OFF Response Time | 1.0 ms max . |  |  |  |
| No. of Circuits | 32 (16 points/common, 2 circuits) |  | OFF Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1 |
| Fuse | None |  |  |  |
| External Power Supply | 10.2 to $26.4 \mathrm{VDC}, 30 \mathrm{~mA} \mathrm{~min}$. |  | No. of Circuits | 32 (16 points/common, 2 circuits) |
|  |  |  | Number of Simultaneously ON Points | 75\% (24 points) (at 24 VDC ) |
| Insulation Resistance | $20 \mathrm{M} \Omega$ min. between the external terminals and the GR terminal (at 100 VDC ) |  |  |  |
| Dielectric <br> Strength | 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max. |  |  |  |
| Internal Current Consumption | 5 VDC 140 mA max. |  |  |  |
| Weight | 110 g max. |  |  |  |
| Accessories | None |  |  |  |
| Circuit Configuration | CN1 (OUT) |  | CN2 (IN) |  |
|  | - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  | - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  |
|  |  | Number of Simultane Ambient Temperature 32 points at $38^{\circ} \mathrm{C}$ | usly ON Points vs. Characteristic |  |

## CJ1W-MD


*1. The ON response time will be $120 \mu$ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
*2. Observe the following restrictions when connecting to a 2 -wire sensor.

- Make sure the input power supply voltage is larger than the ON voltage ( 19 V ) plus the residual voltage of the sensor (approx. 3 V ).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

CJ1W-MD263 DC Input/Transistor Output Unit (24 VDC 32 Inputs/32 Outputs)

| Name | 32-point DC Input/32-point Transistor Output Unit with MIL Connectors (Sinking Outputs) |  |  |
| :---: | :---: | :---: | :---: |
| Model | CJ1W-MD263 |  |  |
| Output section (CN1) |  | Input section (CN2) |  |
| Rated Voltage | 12 to 24 VDC | Rated Input Voltage | 24 VDC |
| Operating Load Voltage Range | 10.2 to 26.4 VDC | Operating Input Voltage | 20.4 to 26.4 VDC |
| Maximum Load Current | 0.3 A/point, 1.6 A/common, 3.2 A/Unit | Input Impedance | $5.6 \mathrm{k} \Omega$ |
| Maximum Inrush Current | 3.0 A/point, 10 ms max . | Input Current | 4.1 mA typical (at 24 VDC) |
| Leakage Current | 0.1 mA max. | ON Voltage/ON Current | 19.0 VDC min./3 mA min. *2 |
| Residual Voltage | 1.5 V max. | OFF Voltage/OFF Current | 5 VDC max./1 mA max. |
| ON Response Time | 0.5 ms max. | ON Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1 |
| OFF Response Time | 1.0 ms max. |  |  |
| No. of Circuits | 32 (16 points/common, 2 circuits) | OFF Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1 |
| Fuse | None |  |  |
| External Power Supply | 10.2 to $26.4 \mathrm{VDC}, 30 \mathrm{~mA} \mathrm{~min}$. | No. of Circuits | 32 (16 points/common, 2 circuits) |
|  |  | Number of Simultaneously ON Points | 75\% (24 points) (at 24 VDC ) |
| Insulation Resistance | $20 \mathrm{M} \Omega \mathrm{min}$. between the external terminals and the GR terminal (at 100 VDC ) |  |  |
| Dielectric Strength | 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max. |  |  |
| Internal Current Consumption | 5 VDC 140 mA max. |  |  |
| Weight | 110 g max. |  |  |
| Accessories | None |  |  |
|  | CN1 (OUT) | CN2 (IN) |  |
| Circuit Configuration | - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. | Allocated <br> CIO word $\text { Wd m+2 }\left\{\begin{array}{l} \mathrm{Jxx} \_\mathrm{Cl} \\ \mathrm{Jxx} \mathrm{Cl} \end{array}\right.$ $\mathrm{Wdm}+3\left\{\begin{array}{l} \mathrm{Jxx} \_\mathrm{Cl} \\ \mathrm{Jxx} \_\mathrm{Cl} \end{array}\right.$ <br> - The signal names The device variable name. |  <br> the terminals are the device variable names. names are the names that use "Jxx" as the device |



*1. The ON response time will be $120 \mu$ s maximum and OFF response time will be $400 \mu$ s maximum even if the response times are set to 0 ms due to internal element delays.
*2. Observe the following restrictions when connecting to a 2 -wire sensor.

- Make sure the input power supply voltage is larger than the ON voltage ( 19 V ) plus the residual voltage of the sensor (approx. 3 V ).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

CJ1W-MD232 DC Input/Transistor Output Unit (24 VDC, 16 inputs/16 Outputs)

| Name | 16-point DC Input/16-point Transistor Output Unit with MIL Connectors (Sourcing Outputs) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | CJ1W-MD232 |  |  |  |  |
| Output section (CN1) |  | Input section (CN2) |  |  |  |
| Rated Voltage | 24 VDC | Rated Input Voltage | 24 VDC |  |  |
| Operating Load Voltage Range | 20.4 to 26.4 VDC | Operating Input Voltage | 20.4 to 26.4 VDC |  |  |
| Maximum Load Current | 0.5 A/point, 2.0 A/Unit | Input Impedance | $3.3 \mathrm{k} \Omega$ |  |  |
| Leakage Current | 0.1 mA max. | Input Current | 7 mA typical (at 24 VDC ) |  |  |
| Residual Voltage | 1.5 V max. | ON Voltage/ON Current | 14.4 VDC min./3 mA min. |  |  |
| ON Response Time | 0.5 ms max. | OFF Voltage/OFF Current | 5 VDC max. 11 mA max. |  |  |
| OFF Response Time | 1.0 ms max. | ON Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |  |  |
| Load Shortcircuit Protection | Detection current: 0.7 to 2.5 A min. Automatic restart after error clearance. | OFF Response Time | 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) * |  |  |
| No. of Circuits | 16 (16 points/common, 1 circuit) | No. of Circuits | 16 (16 points/common, 1 circuit) |  |  |
| External Power Supply | 20.4 to 26.4 VDC, 40 mA min. | Number of Simultaneously ON Points | 75\% (at 24 VDC ) |  |  |
| Insulation Resistance | $20 \mathrm{M} \Omega \mathrm{min}$. between the external terminals and the GR terminal (at 100 VDC ) |  |  |  |  |
| Dielectric Strength | 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max. |  |  |  |  |
| Internal Current Consumption | 5 VDC $130 \mathrm{~mA} \mathrm{max}$. |  |  |  |  |
| Weight | 100 g max. |  |  |  |  |
| Accessories | None |  |  |  |  |
| Circuit Configuration | CN1 (OUT) | CN2 (IN) |  |  |  |
|  | - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  <br> - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name. |  |  |  |
|  |  |  |  |  |  |



* The ON response time will be $20 \mu$ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD563 TTL I/O Unit (32 Inputs/32 Outputs)



[^1]Bit Allocations for Mixed I/O Unit

32-point Mixed I/O Unit

| Allocated CIO word |  | Signal name (CJ/NJ) |
| :---: | :---: | :---: |
| WIO <br> (Output) | Bit |  |
|  | 00 | OUT0/Jxx_Ch1_Out00 |
|  | 01 | OUT1/Jxx_Ch1_Out01 |
|  | $:$ | $:$ |
|  | 14 | OUT14/Jxx_Ch1_Out14 |
| Wd m+1 <br> (Input) | 15 | OUT15/Jxx_Ch1_Out15 |
|  | 00 | IN0/Jxx_Ch1_In00 |
|  | 01 | IN1/Jxx_Ch1_In01 |
|  | $:$ | $:$ |
|  | 14 | IN14/Jxx_Ch1_In14 |
|  |  | 15 |

64-point Mixed I/O Unit

| Allocated CIO word |  | Signal name (CJ/NJ) |
| :---: | :---: | :---: |
| CIO | Bit |  |
| Wd m (Output) | 00 | OUT0/Jxx_Ch1_Out00 |
|  | 01 | OUT1/Jxx_Ch1_Out01 |
|  | : | : |
|  | 14 | OUT14/Jxx_Ch1_Out14 |
|  | 15 | OUT15/Jxx_Ch1_Out15 |
| Wd m+1 (Output) | 00 | OUTO/Jxx_Ch2_Out00 |
|  | 01 | OUT1/Jxx_Ch2_Out01 |
|  | : | : |
|  | 14 | OUT14/Jxx_Ch2_Out14 |
|  | 15 | OUT15/Jxx_Ch2_Out15 |
| Wd m+2 (Input) | 00 | IN0/Jxx_Ch1_In00 |
|  | 01 | IN1/Jxx_Ch1_In01 |
|  | : | : |
|  | 14 | IN14/Jxx_Ch1_In14 |
|  | 15 | IN15/Jxx_Ch1_In15 |
| Wd m+3 (Input) | 00 | INO/Jxx_Ch2_In00 |
|  | 01 | IN1/Jxx_Ch2_In01 |
|  | : | : |
|  | 14 | IN14/Jxx_Ch2_In14 |
|  | 15 | IN15/Jxx_Ch2_In15 |

## External Interface

## 32-point Units (Model with 24-pin $\times 2$ Fujitsu Connectors or with 20-pin $\times 2$ MIL Connectors)



## 64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)



## I/O Unit Wiring Methods

An I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided Cable

An I/O Unit can be directly connected to an external device by using a connector.


| A | User-provided cable |
| :---: | :--- |
| B | External device |
| $\mathbf{C}$ | Connector |

2. Connector-Terminal Block Conversion Unit

Use a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit.
Converting the I/O Unit connector to a screw terminal block or push-in terminal block makes it easy to connect external devices.


| A | Connecting Cable for Connector-Terminal Block Conversion Unit <br> XW2Z |
| :---: | :--- |
| B | Connector-Terminal Block Conversion Unit <br> XW2 $\square$ |
| C | Conversion to a screw terminal block |

3. I/O Relay Terminal

Use a Connecting Cable to connect to an I/O Relay Terminal.
The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.


| A | Connecting Cable for I/O Relay Terminals <br> XW2Z-R |
| :---: | :--- |
| B | I/O Relay Terminals |
|  |  |
|  |  |
|  |  |
|  | I/O Terminal Socket |
|  | G70A |
|  | Or, conversion to relay outputs and AC inputs. |

## CJ1W-MD

## 1. Using User-made Cables with Connector

## Available Connectors

Use the following connectors when assembling a connector and cable.
32- and 64-point Basic I/O Units with Fujitsu-compatible Connectors
Applicable Units

| Model | Specifications | Pins |
| :--- | :--- | :--- |
| CJ1W-MD261 | 24-VDC Input/Transistor Output Units, 32 Inputs, 32 Outputs | 40 |
| CJ1W-MD231 | 24-VDC Input/Transistor Output Units, 16 Inputs, 16 Outputs | 24 |

Applicable Cable-side Connectors

| Connection | Pins | OMRON set | Fujitsu parts |
| :---: | :---: | :---: | :---: |
| Solder-type | 40 | C500-CE404 | Socket: FCN-361J040-AU Connector cover: FCN-360C040-J2 |
|  | 24 | C500-CE241 | Socket: FCN-361J024-AU Connector cover: FCN-360C024-J2 |
| Crimped | 40 | C500-CE405 | Socket: FCN-363J040 <br> Connector cover: FCN-360C040-J2 <br> Contacts: FCN-363J-AU |
|  | 24 | C500-CE242 | Socket: FCN-363J024 <br> Connector cover: FCN-360C024-J2 <br> Contacts: FCN-363J-AU |
| Pressure-welded | 40 | C500-CE403 | FCN-367J040-AU/F |
|  | 24 | C500-CE243 | FCN-367J024-AU/F |

## 32- and 64-point Basic I/O Units with MIL Connectors

Applicable Units

| Model | Specifications | Pins |
| :--- | :--- | :---: |
| CJ1W-MD263 | $24-$ VDC Input/Transistor Output Units, 32 inputs, 32 outputs |  |
| CJ1W-MD563 | TTL Input/TTL Output Units, 32 inputs, 32 outputs | 40 |
| CJ1W-MD232 | $24-$ VDC Input/Transistor Output Units, 16 inputs, 16 outputs | 20 |
| CJ1W-MD233 | 24 -VDC Input/Transistor Output Units, 16 inputs, 16 outputs | 2 |

Applicable Cable-side Connectors

| Connection | Pins | OMRON set | DDK parts |
| :--- | :--- | :--- | :--- |
| Pressure-welded | 40 | XG4M-4030-T *1 | FRC5-A040-3T0S |
|  | 20 | XG4M-2030-T | FRC5-A020-3T0S |
| Crimped | 40 | XG5N-401 *2 | HU-40OS2-001 |
|  | - | Crimp Contacts for XG5N *3 <br> XG5W-0232 (loose contacts: 100 pieces) <br> XG5W-0232-R (reel contacts: 10,000 pieces) | HU-111S |

*1. Socket and Stain Relief set.
*2. Crimp Contacts (XG5W-0232) are sold separately.
*3. Applicable wire size is AWG 28 to 24. For applicable conductor construction and more information, visit the OMRON website at www.ia.omron.com.

## Wire Size

We recommend using cable with wire gauges of AWG 28 to 24 ( 0.08 to $0.2 \mathrm{~mm}^{2}$ ). Use cable with external wire diameters of 1.61 mm max.

## Crimping Tools

The following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors.
Tools for Crimped Connectors (Fujitsu Component)

| Product Name |  |
| :--- | :--- |
| Hand Crimping Tool | FCN-363T-T005/H |
| Contact Withdrawal Tool | FCN-360T-T001/H |

Tools for Pressure-welded Connectors (Fujitsu Component)

| Product Name | Model |
| :--- | :--- |
| Hand Press | FCN-707T-T101/H |
| Cable Cutter | FCN-707T-T001/H |
| Locator Plate | FCN-367T-T012/H |

The following models are recommended for tools for OMRON MIL connectors.
Tools for Pressure-welded Connectors (OMRON)

| Product Name |  | Model |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Pressure-welding Tool | XY2B-0002 |  |  |  |  |
| Attachment | XY2B-1007 |  |  |  |  |
| Tools for Crimped Connectors (OMRON) |  | Model |  |  |  |
| Product Name |  |  |  |  |  |
| Manual Crimping Tool |  |  |  |  |  |

## 2. Connecting Connector-Terminal Block Conversion Units

Connection Patterns for Connector-Terminal Block Conversion Units


Combination of I/O Units with Connector-Terminal Block Conversion Units

| Unit | I/O capacity | Number of connectors | Polarity | Connection pattern | Connecting Cable * | Connector-Terminal Block Conversion Unit | Wiring method | Common terminals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CJ1W-MD231 | 16 I/O points | 2 Fujitsu connectors ( 1 for 16 inputs and 1 for 16 outputs) | NPN | C | $\begin{aligned} & \text { XW2Z- } \square \square \square A \\ & (2 \mathrm{pcs}) \end{aligned}$ | XW2R-J20GD-T (2 Units) | Phillips screw | No |
|  |  |  |  |  |  | XW2R-E20GD-T (2 Units) | Slotted screw (rise up) |  |
|  |  |  |  |  |  | XW2R-P20GD-T (2 Units) | Push-in spring |  |
| CJ1W-MD232 | 16 I/O points | 2 MIL connectors <br> ( 1 for 16 inputs and 1 for 16 outputs) | PNP | C | $\begin{aligned} & \text { XW2Z- } \square \square \square X \\ & (2 \mathrm{pcs}) \end{aligned}$ | XW2R-J20GD-T (2 Units) | Phillips screw | No |
|  |  |  |  |  |  | XW2R-E20GD-T (2 Units) | Slotted screw (rise up) |  |
|  |  |  |  |  |  | XW2R-P20GD-T (2 Units) | Push-in spring |  |
| CJ1W-MD233 | 16 I/O points | 2 MIL connectors (1 for 16 inputs and 1 for 16 outputs) | NPN | C | $\begin{aligned} & \text { xw2z- } \square \square \square X \\ & (2 \mathrm{pcs}) \end{aligned}$ | XW2R-J20GD-T (2 Units) | Phillips screw | No |
|  |  |  |  |  |  | XW2R-E20GD-T (2 Units) | Slotted screw (rise up) |  |
|  |  |  |  |  |  | XW2R-P20GD-T (2 Units) | Push-in spring |  |
| CJ1W-MD261 | 32 I/O points | 2 Fujitsu connectors (1 for 32 inputs and 1 for 32 outputs) | NPN | B | $\begin{aligned} & \text { XW2Z- } \square \square \square \mathrm{PF} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-J34GD-C1 <br> (Input side of the unit) | Phillips screw | No |
|  |  |  |  |  | $\begin{array}{\|l} \begin{array}{l} \text { XW2Z- } \square \square \square P F \\ (1 \mathrm{pcs}) \end{array} \end{array}$ | XW2R-J34GD-C3 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PF} \\ & (1 \mathrm{pcs}) \end{aligned}$ | XW2R-E34GD-C1 <br> (Input side of the unit) | Slotted screw (rise up) |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \text { (1 } \square \text { Pcs) } \\ & \text { (1) } \end{aligned}$ | XW2R-E34GD-C3 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \square \mathrm{PF} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-P34GD-C1 <br> (Input side of the unit) | Push-in spring |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \square \mathrm{PF} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-P34GD-C3 <br> (Output side of the unit) |  |  |
| CJ1W-MD263 | 32 I/O points | 2 MIL connectors ( 1 for 32 inputs and 1 for 32 outputs) | NPN | B | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-J34GD-C2 <br> (Input side of the unit) | Phillips screw | No |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z-पवपPM } \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-J34GD-C4 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{array}{\|l} \begin{array}{l} \text { XW2Z- } \\ \text { (1 pcs) } \end{array} \end{array}$ | XW2R-E34GD-C2 <br> (Input side of the unit) | Slotted screw (rise up) |  |
|  |  |  |  |  | $\begin{array}{\|l} \begin{array}{l} \text { XW2Z- } \\ \text { (1 pcs) } \end{array} \end{array}$ | XW2R-E34GD-C4 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z-ดロロPM } \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-P34GD-C2 <br> (Input side of the unit) | Push-in spring |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-P34GD-C4 <br> (Output side of the unit) |  |  |

[^2]
## CJ1W-MD

| Unit | I/O capacity | Number of connectors | Polarity | Connection pattern | Connecting Cable * | Connector-Terminal Block Conversion Unit | Wiring method | Common terminals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CJ1W-MD563 | 32 I/O points | 2 MIL connectors (1 for 32 inputs and 1 for 32 outputs) | - | B | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-J34GD-C2 <br> (Input side of the unit) | Phillips screw | No |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-J34GD-C4 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-E34GD-C2 <br> (Input side of the unit) | Slotted screw (rise up) |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-E34GD-C4 <br> (Output side of the unit) |  |  |
|  |  |  |  |  | $\begin{array}{\|l} \hline \text { XW2Z- } \square \square \mathrm{PM} \\ \text { (1 pcs) } \end{array}$ | XW2R-P34GD-C2 <br> (Input side of the unit) | Push-in spring |  |
|  |  |  |  |  | $\begin{aligned} & \text { XW2Z- } \square \square \mathrm{PM} \\ & \text { (1 pcs) } \end{aligned}$ | XW2R-P34GD-C4 <br> (Output side of the unit) |  |  |

* The box $\square$ is replaced by the cable length.


## 3. Connecting I/O Relay Terminals

Connection Patterns for I/O Relay Terminals


Combination of I/O Units with I/O Relay Terminals and Connecting Cables

| I/O Units |  |  |  | Connection pattern | Connecting Cables |  | I/O Relay Terminals |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | I/O capacity | External connectors | Polarity |  | Model *1 | Quantity required | Model | I/O points | Quantity required | Wiring method |
| CJ1W-MD231 | 16 inputs | 1 Fujitsu connector (24 p) | NPN/PNP | E | XW2Z-R $\square \mathrm{C}$ | 1 | G70V-SID16P(-1)(-C16) *2 | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-ID/IA16 | 16 |  | Screw terminal |
|  | 16 outputs | 1 Fujitsu connector (24 p) | NPN (Sinking) |  | XW2Z-R $\square \mathrm{C}$ | 1 | G70V-SOC16P(-C4) | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-OC16 | 16 |  | Screw terminal |
|  |  |  |  |  |  |  | G70D-SOC/FOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70D-VSOC16/VFOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70A-ZOC16-3 * 4 | 16 |  |  |
|  |  |  |  |  |  |  | G70R-SOC08 *3 | 8 |  |  |
| CJ1W-MD232 | 16 inputs | 1 MIL connector (20 p) | NPN/PNP | E | XW2Z-RO■C | 1 | G70V-SID16P(-1)(-C16) *2 | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-ID/IA16 | 16 |  | Screw terminal |
|  | 16 outputs | 1 MIL connector (20 p) | PNP <br> (Sourcing) |  | XW2Z-RI $\square \mathrm{C}$ | 1 | G70V-SOC16P-1(-C4) | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G70A-ZOC16-4 *4 | 16 |  | Screw terminal |
|  |  |  |  |  |  |  | G70D-SOC/FOM16-1 | 16 |  |  |
|  |  |  |  |  | XW2Z-RO■C | 1 | G7TC-OC16-1 | 16 |  |  |
| CJ1W-MD233 | 16 inputs | 1 MIL connector (20 p) | NPN/PNP | E | XW2Z-RO■C | 1 | G70V-SID16P(-1)(-C16) *2 | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-ID/IA16 | 16 |  | Screw terminal |
|  | 16 outputs | 1 MIL connector (20 p) | NPN (Sinking) |  | XW2Z-RO■C | 1 | G70V-SOC16P(-C4) | 16 | 1 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-OC16 | 16 |  | Screw terminal |
|  |  |  |  |  |  |  | G70D-SOC/FOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70D-VSOC16/VFOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70A-ZOC16-3 *4 | 16 |  |  |
|  |  |  |  |  |  |  | G70R-SOC08 *3 | 8 |  |  |
| CJ1W-MD261 | 32 inputs | 1 Fujitsu connector (40 p) | NPN/PNP | B | XW2Z-RI $\square \mathrm{C}-\square$ | 1 | G70V-SID16P(-1)(-C16) *2 | 16 | 2 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-ID/IA16 | 16 |  | Screw terminal |
|  | 32 outputs | 1 Fujitsu connector (40 p) | NPN (Sinking) |  | XW2Z-RO $\square \mathrm{C}-\square$ | 1 | G70V-SOC16P(-C4) | 16 | 2 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-OC16 | 16 |  | Screw terminal |
|  |  |  |  |  |  |  | G70D-SOC/FOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70D-VSOC16/VFOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70A-ZOC16-3 *4 | 16 |  |  |
|  |  |  |  |  |  |  | G70R-SOC08 *3 | 8 |  |  |

*1. The box $\square$ is replaced by the cable length.
*2. Inputs can be either NPN or PNP.
*3. In addition to the G70R-SOC08, 8-point output G7TC-OC08 and G70D-SOC08 models are available.
*4. The G70A-ZOC16-3/4 has I/O terminal sockets. Mounted relays are sold separately.
In addition, an G70A-ZOC16-3/4 will be SPDT $\times 16$ points with G2R relays.

| I/O Units |  |  |  | Connection pattern | Connecting Cables |  | I/O Relay Terminals |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | $\begin{gathered} \text { I/O } \\ \text { capacity } \end{gathered}$ | External connectors | Polarity |  | Model *1 | Quantity required | Model | I/O points | Quantity required | Wiring method |
| CJ1W-MD263 | 32 inputs | 1 MIL connector (40 p) | NPN/PNP |  | XW2Z-RO■-口-D1 | 1 | G70V-SID16P(-1)(-C16) *2 | 16 | 2 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-ID/IA16 | 16 |  | Screw terminal |
|  | 32 outputs | 1 MIL connector (40 p) | NPN <br> (Sinking) | B | XW2Z-RO■-■-D1 | 1 | G70V-SOC16P(-C4) | 16 | 2 | Push-in spring |
|  |  |  |  |  |  |  | G7TC-OC16 | 16 |  | Screw terminal |
|  |  |  |  |  |  |  | G70D-SOC/FOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70D-VSOC16/VFOM16 | 16 |  |  |
|  |  |  |  |  |  |  | G70A-ZOC16-3 *4 | 16 |  |  |
|  |  |  |  |  |  |  | G70R-SOC08 *3 | 8 |  |  |

*1. The box $\square$ is replaced by the cable length.
*2. Inputs can be either NPN or PNP.
*3. In addition to the G70R-SOC08, 8-point output G7TC-OC08 and G70D-SOC08 models are available.
*4. The G70A-ZOC16-3/4 has I/O terminal sockets. Mounted relays are sold separately.
In addition, an G70A-ZOC16-3/4 will be SPDT $\times 16$ points with G2R relays.

## Dimensions

## 32-point Units (Mixed I/O Units)

With Fujitsu-compatible connector (24-pin $\times 2$ )
CJ1W-MD231


With MIL connector (20-pin $\times 2$ ) CJ1W-MD232 CJ1W-MD233


## 64-point Units (Mixed I/O Units)

With Fujitsu-compatible connector (40-pin $\times 2$ )
CJ1W-MD261


With MIL connector (40-pin $\times 2$ )
CJ1W-MD263
CJ1W-MD563


## Related Manuals

| Name | Cat. No. | Contents |
| :---: | :---: | :---: |
| NJ -series <br> CPU Unit Hardware User's Manual NJ501- | W500 | An introduction to the entire NJ -series system is provided along with the following information on a Controller built with an NJ501 CPU Unit. <br> - Features and system configuration <br> - Introduction <br> - Part names and functions <br> - General specifications <br> - Installation and wiring <br> - Maintenance and inspection <br> Use this manual together with the NJ -series CPU Unit Software User's Manual (Cat. No. W501). |
| CJ Series CJ1H-CPU $\square \square H-R, C J 1 G / H-C P U \square \square H, ~ C J 1 G-C P U ~ \square \square P, ~$ CJ1G-CPU $\square$ , CJ1M-CPU <br> Programmable Controllers Operation Manual | W393 | Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs. |
| CJ-series <br> CJ2H-CPU6 $\square$-EIP, CJ2H-CPU6 $\square$, CJ2M-CPU $\square \square$ <br> CJ2 CPU Unit Hardware User's Manual | W472 | Describes the following for CJ2 CPU Units: <br> - Overview and features <br> - Basic system configuration <br> - Part nomenclature and functions <br> - Mounting and setting procedure <br> - Remedies for errors <br> - Also refer to the Software User's Manual (W473). |

## Terms and Conditions Agreement

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.
(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.
Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

## Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products
Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

## Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications
Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.
Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.


[^0]:    * Crimp Contacts are also required. Refer to page 20 for details.

[^1]:    * The ON response time will be $120 \mu \mathrm{~s}$ maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

[^2]:    * The box $\square$ is replaced by the cable length.

